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These are preliminary results. As we test and refine our models, results will change. We do 

however welcome you to refer to our published work:

Vardavas et al. The Health and Economic Impacts of Nonpharmaceutical Interventions to 

Address COVID-19: A Decision Support Tool for State and Local Policymakers, Santa Monica, 

Calif.: RAND Corporation, TL-A173-1, 2020. 2021: https://www.rand.org/pubs/tools/TLA173-1.html2

https://www.rand.org/pubs/tools/TLA173-1.html
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California is going through a test of its reopening strategy.

How should the state manage their existing NPIs going forward, given:

1. The uncertainties surrounding multiple vaccines and their uptake

2. The costs of alternative stringency levels

3. The health/economic robustness tradeoffs implied by different policies

4. Existing inequities and the higher costs of NPIs for the most vulnerable.
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Motivation and Policy Question:

How to manage NPIs in 2021 in a State like 
California?
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Motivation and Policy Question:

How to manage NPIs in 2021 in California?

A. Reopening thresholds are defined at the county 

level

B. The plan is highly detailed and contains 

restrictions on capacity and detailed regulations 

on how to reopen

C. The plan does not contain justification for its 

thresholds, neither a statement about how the 

plan will change in the future

D. 40 million of people currently live under the 

widespread risk level

https://covid19.ca.gov/safer-economy/
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https://covid19.ca.gov/safer-economy/
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Prior Work: 

The Health and Economic Impacts of Nonpharmaceutical 
Interventions to Address COVID-19
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◦ https://www.rand.org/pubs/tools/TLA173-1.html

https://www.rand.org/pubs/tools/TLA173-1.html
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Model Documentation: https://www.rand.org/pubs/tools/TLA173-1.html

We built two models to represent health and economic effects of 
Nonpharmaceutical interventions at the state level:

A. Health Outcomes:
A. Stratified ODE model (similar to those used to evaluate 

vaccination policies). Uses pre-defined mixing matrices to specify 
how mixing changes; magnitude of transmission reduction is 
obtained by calibration.

B. Outputs: Deaths, Cases, Days under specific NPI Portfolios levels.

B. Economic Outcomes:
A. Computable general equilibrium model: Can estimate the 

spillover effects of shutting down specific industries. Has its own 
limitations as do all “comparative statics” models, but is valuable 
because it represents interconnected economic sectors.

B. Key output: Income Loss, as a function of days under specific 
portfolios.

Prior Work: 

The Health and Economic Impacts of Nonpharmaceutical 
Interventions to Address COVID-19

https://www.rand.org/pubs/tools/TLA173-1.html
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Disease Progression Model without Vaccination

• The noninfected and susceptible (𝑆), 
• The exposed and infected but not yet infectious (𝐸), The pre-

symptomatic or primary infectious stage (𝑃), the infected with 
mild symptoms (𝐼𝑆𝑚), 

• The infected with severe symptoms (𝐼𝑆𝑠),
• The diagnosed infected with mild symptoms (𝑌𝑆𝑚), 
• The diagnosed infected with severe symptoms (𝑌𝑆𝑠), 
• The hospitalized (𝐻), 
• The infected asymptomatic (𝐼𝐴), 
• The diagnosed infected asymptomatic (𝑌𝐴), 
• The recovered (𝑅), and 
• those that died (𝐷).

Strata: <19, HCEW, Workers, Working age with Chronic Conditions,  
65+
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Disease Progression Model with Vaccination
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1. RDM provides an iterative framework for evaluating 
policies while accounting for deep uncertainty

2. Uses models to stress-test policies across wide range 
of futures, reflecting uncertainties

3. Quantitative vulnerability analysis identifies the 
assumptions that lead policies to be successful and 
unsuccessful, and informs development of adaptive 
strategies

4. Tradeoff analysis helps balance across multiple 
objectives and identify robust strategies

5. RDM Is part of a family of Decision making Under 
Deep Uncertainty (DMDU) methods.

More information on RDM: 
https://www.rand.org/methods/rdmlab.html
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Approach 

Using the Robust Decision Making (RDM) approach to 
evaluate reopening strategies under uncertainty

https://www.rand.org/methods/rdmlab.html
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Decision Framing: 
Representing the pandemic control loop
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Decision Framing: 
Representing the pandemic control loop
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Representing 
NPIs 
dynamically

I. Each line represents a strategy 
with a constant “level of 
caution” (0.5, 6 and 24)

II. NPI Levels are endogenously 
defined by prevalence

III. Income loss is proportional to 
the time spent under each NPI 
level.
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Decision Framing: 
Policy question: How to manage this level of 
caution over time?
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Decision Framing: 
Policy Levers and Strategies

We test three types of NPI Strategies:

1. Constant Caution NPI Strategies: Uses the same Level of caution throughout the 
simulation

2. Time-Based NPI Strategies: Changes the Level of Caution at a given date – e.g. Spring 
or Fall.

1. Transition Date: When will we transition a different level of caution? 
2. New Level of Caution Multiplier: When we transition, how cautious will we be, relative to our 

prior level of caution? 

3. Vaccination-Based NPI strategies: Changes the Level of Caution as a function of 
vaccination.

1. Caution relaxation rate: Controls how fast society relaxes NPIs as a function of vaccination 
(steepness of reverse S curve).

2. Adaptive caution midpoint: Controls at which point the baseline level of caution is halved 
(position of the midpoint of the S curve).

All strategies start with a Baseline Level of Caution: The Prevalence level we need to see to 
intervene with NPIs
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Baseline plan with Level of caution ~ 6



1. Introduction  |  2. Decision Framing | 3. Experimental Design | 4. Results | 5. Conclusion

The NPI level is defined as a function of known prevalence 𝑝𝑡 with this controller 
function:

𝒙𝒕 , our level of caution, can be defined exogenously as a function of time or 
endogenously by the vaccination status rate with an inverse S curve:

where 𝑉∗ is the current vaccination coverage, 𝑉𝑚𝑖𝑑 is the vaccination coverage 
where the level of caution is halved and 𝑘𝑐 is the rate at which the level of 
caution decreases. 
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Decision Framing: 
Alternative strategies are represented by  how 
our “level of caution” is managed over time
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Uncertainties
Each strategy is stress-tested in a set of State of the World (SOWs) defined by a combination 
of uncertainties

1. Vaccine Efficacy to prevent transmission (10%-100%): A parameter that controls to what 
extent vaccine efficacy is attributed to disease prevention or infection prevention.

2. Behavioral Response to Vaccination (0%-25%): Will people mix more once they get 
vaccinated? We have a parameter that allows mixing to increase dynamically as more people get 
vaccinated.

3. Willingness to Vaccinate (60% - 100%): A single parameter controls a uniform willingness to 
vaccinate parameter.

4. Changes in transmissibility (-50% + 50%): New strains are expected to change transmissibility 
to an uncertain degree. So is our level of mask wearing / voluntary social distancing in the future. 
We have a single parameter that controls changes in transmissibility as a deviation from the 
baseline value. 

5. Actual Vaccination Rate (-50% - 150%): As we saw in the initial rollout we cannot take for 
granted that vaccination will follow pre-specified, often optimistic timelines.   

6. Uncertainties not explored in the previous experimental design:
1. Change in Mortality (-20% - 50%)
2. Change in Vaccine Efficacy (-50% - 0%)
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Approach Summary
Inputs Preparation and Normalization

•Obtain deaths and incidence timeseries from the COVID-19 Tracking API

•Construct a state-level NPI Timeseries compatible with the economic and the epidemiological models 

Model Calibration – Simulate the Past

•Find n sets of parameters that explain past deaths timeseries.

•Use either an Latin Hypercube Sample of 35 model parameters or the IMABC algorithm.

Define future Experimental Design

•Strategies: Create s Strategies by obtaining a full factorial design  of all policy levers.

•Deep Uncertainties: Obtain a new LHS sample with u lines for the additional uncertainties not included in model calibration (future vaccination rate, change in 
transmissibility, behavioral effect of vaccination, etc.)

•Obtain full future experimental design with n * s * u cases. Choose n, s, and u such that we stay under a computational budget. A future state of the world (SOW) is 
defined as a combination of calibrated and “deeply uncertain” parameters.

Evaluate Strategies across all futures

•Simulate all the n * s * u cases.

Compute Regret across strategies and futures for all outcomes of interest

•For each future state of the world and strategy, find the regret for each metric. 

•For example, deaths regret 𝑅𝑠,𝑓 of strategy 𝑠 in future 𝑓 is defined as 𝑅𝑠,𝑓 = 𝐷𝑠,𝑓 − min
𝑥

𝐷𝑥,𝑓 ∀ 𝑠, 𝑓, that is the difference in the outcome between each strategy and the 

best strategy for that future.

Trace Robustness tradeoffs curve, find pareto-dominated strategies

•Use a percentile of the regret distribution conditional on the strategy to trace the resulting many-objective robustness tradeoffs curve. Use this curve to judge strategies.

17
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The Outcome Space

Each dot represents the performance of an 

strategy in one future. We stress-test 78 
strategies across 20,000 futures

The most significant uncertainty driving results 

is, unsurprisingly, the change in transmissibility.

Robustness is measured with regret – the 
difference between the performance of each 
policy and the best policy, in each future state 

of the world.

This allows us to rank strategies by their 
robustness across all futures rather than by 

their optimality in a best-guess of the future.
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Most stringent policy  
No change in level of 
Caution after vaccine 

-> 0 deaths regret

Most similar to the 
Strategy, with 

constant caution.

Start with current 
strategy, gradually 

reduces level of 
caution such that 
level of caution is 

halved when Prop. 
Vaccinated = 50%

Regret distributions by Strategy
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Health-Economic Robustness Tradeoffs
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Health-Economic Robustness Tradeoffs
These results indicate that many strategies – including our baseline strategy - are 
dominated

Baseline strategy 
was pareto-
dominated.
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Vaccination-Based 
or Time-based 

policies resulted in 

better trade-offs

I. Vaccination-Based policies often 

are in the pareto front. 

II. A few time-based policies also 
were in the pareto front

III. The only constant-caution policy in 

the pareto-front is the most-
stringent, and the current policy 

was dominated.

IV. We stop the model in Feb 2022. If 
we ran the model for more time, 
these differences will likely 

increase.
23

This is our 

policy if 

nothing is 

changed
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Summary of Non-Dominated Strategies
The baseline Strategy was dominated. These are the non-dominated alternatives found in this experimental design. 
These numbers are not predictions.

Category Strategy Initial Level Of Caution Strategy Description

Percentile (75) 

of Cumulative 
Deaths Regret

Median 

Cumulative 
Deaths Regret

Percentile (75) 

of NPI Days 
Regret

Median 

NPI Days
Regret

Percentile (75) 

of Cumulative 
Percent Income 
Loss Regret

Median 

Cumulative 
Percent Income 
Loss Regret

Dominated C-6-1 6 Constant Caution 4.4 2.3 232.0 146.0 10.1 6.7

Non-

Dominated, 

Selected

C-24-1 24 Constant Caution 0.0 0.0 239.0 153.0 11.0 7.5

T-24-4 24 Reduces Level of Caution by 

50% on 2021-09-26 0.3 0.1 222.0 135.5 10.3 6.9

V-24-3 24 Reduces Level of caution by 1/2 

when vacc. coverage is 0.5 0.8 0.3 205.5 138.0 9.8 7.1

T-24-2 24 Reduces Level of Caution by 

90% on 2021-09-26 2.2 0.4 205.5 127.0 9.7 6.5

V-12-3 12 Reduces Level of caution by 1/2 

when vacc. coverage is 0.5 3.2 1.5 197.8 115.0 9.1 5.9

V-24-2 24 Reduces Level of caution by 1/2 

when vacc. coverage is 0.4 4.2 1.6 183.0 109.0 8.7 6.0

V-6-3 6 Reduces Level of caution by 1/2 

when vacc. coverage is 0.5 8.6 4.5 187.0 121.5 8.3 5.7

V-12-2 12 Reduces Level of caution by 1/2 

when vacc. coverage is 0.4 9.7 4.2 177.0 106.0 8.1 5.5

V-3-3 3 Reduces Level of caution by 1/2 

when vacc. coverage is 0.5 15.9 10.5 164.5 110.0 7.1 5.0

V-6-2 6 Reduces Level of caution by 1/2 

when vacc. coverage is 0.4 17.2 8.4 148.0 91.0 6.9 4.5
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1. Society will need to be cautious and consistent in their reopening strategies to 

minimize COVID-19 deaths during vaccination rollout.

2. Reopening strategies based on stringent reopening thresholds unsurprisingly lead 

to robust health outcomes when stress-tested over a wide range of futures.

3. However, fixed-threshold reopening strategies seem to be pareto-dominated 

when one accounts for economic outcomes.

4. These results emphasize the need for a structured approach for reopening, and the 

potential regrets of following dominated strategies.

5. These regrets might seem small – but we must acknowledge that they will be 

concentrated on the most vulnerable.

25

Back to the Policy Question:

How to manage NPIs in 2021 in a State like 
California?
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Back to the Policy Question:

As always, implementation is the key
A. The plan will have to change anyways as vaccination 

progresses and COVID-19 becomes endemic – that is 
expected.

B. Frequent changes to the reopening plan seem 
arbitrary and unscientific when they are not backed 
up by analysis – but the absence of change is also 
undesirable: as we demonstrated, fixed thresholds 
are pareto dominated.

C. The plan could be explicit about when criteria will 
change based on progress in the vaccination rollout 
and the situation in the ground.

D. Robustness analyses could support the reopening 
strategy while ensuring that it is robust against a 
wide range of emerging uncertainties.
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Limitations and potential extensions
1. This analysis did not presented all the steps in the RDM analysis – scenario discovery could still illuminate 

conditions under which one would switch between strategies.

2. Multiple vaccines are not represented explicitly – model parameters represent average efficacies

3. We don’t model tradeoffs involved with two doses vs single-dose regimes

4. Given their structure, the economic models make strong assumptions about instantaneous economic recovery.

5. We don’t address other long-term outcomes from alternative policies (lack of traditional education in the long-
term, long-term COVID-19 health effects / lung damage).

6. Our model is deterministic, implying that eradicating COVID-19 is never achieved (unfortunately this is still 

reasonable assumption for US states given traveling and lack of cooperation among states; not a good 
assumption for an island or countries with tight border controls).

7. We consider no interactions among different geographic levels.

8. This analysis does not explicitly consider distributional concerns: “Who pays the price of NPIs and who benefits 

from them?”. This matters and deserves more attention.

27



1. Introduction  |  2. Decision Framing | 3. Experimental Design | 4. Results | 5. Conclusion

Thanks!
And thanks to the awesome people who contributed to this work
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Questions?
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